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Abstract

Wind-induced bridge motions are numerically investigated using structural and fluid finite elements (FEs). The fluid–

structure interaction solutions are based on the incompressible Navier–Stokes equations fully coupled to an elastically

suspended rigid body. The unsteady fluid field equations with advection-dominated flow are approximated using the

weighted residuals method of Galerkin/least squares. The bridge deck is idealized as a lumped mass, spring–dashpot

system. The flow simulation around a stationary bridge deck adopts the Eulerian scheme in the entire fluid domain,

whereas the simulations of flow past a moving bridge deck apply the arbitrary Lagrangian–Eulerian formulation.

Predicting the flutter limit, aiming at reducing the number of physical model tests currently required, is the first step and

main objective in the validation of a numerical method applied to long-span bridge decks. It is shown that the low-

frequency flexural–torsional flutter motion is the result of a different aerodynamic effect than vortex-induced bridge

vibrations. Despite a laminar flow assumption, the two-dimensional self-excited flow solutions, on an irregular

unstructured grid of 1884 nodes, predict a flutter limit in good agreement with wind tunnel experiments. The FE model

appears to be a suitable method and could be applied as a supplementary tool to wind tunnel testing for the simulation

of flutter instability. It was concluded that the prediction of flutter instability for sharp edge bridge decks does not

appear sensitive to turbulence and three-dimensional flow structure modelling.

r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Design of long-span suspension bridges is governed by wind action. It involves modelling and solving the fluid

processes in detail with the structure acting as a moving boundary. The key difficulties with regard to the bridge deck

structure is that it is characterized by low structural damping and many modes which are closely spaced at low natural

frequencies ðo0:3 HzÞ: Wind-induced phenomena in flexible structures are numerous. They happen at different wind-

speed ranges, some of them can occur concurrently and also the different modes of oscillation of the structure may be

susceptible to excitation by different mechanisms. Comprehensive backgrounds to the effects of wind on structures are

available in the literature [e.g., Simiu and Scanlan, 1996; Dyrbye and Hansen, 1997].

This study is concerned with aeroelastic design considerations related to long-span bridges with a focus on classical

flutter. One of the first articles on the theory of suspension bridges was presented by Gilbert (1826). Just after World

War II, Selberg (1945) published his book on design of suspension bridges. Approximately 10 years later, Pugsley (1957)

published his work on the theory of suspension bridges. Suspension bridges are the type of bridges which can span the

greatest distance. Governing design criteria for long-span bridges involve the aeroelastic phenomena of vortex-induced
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oscillations, buffeting and flutter (Scanlan, 1981; Dowell et al., 1995). Furthermore, a background to long-span bridge

engineering was recently presented by Larsen (1992) and Larsen and Esdahl (1998).

The sharp edges of bluff bodies like bridge decks usually result in a flow less dependent on the Reynolds number

(defined as Re ¼ UB=n; where U is the free-stream velocity, B is the width of the bridge deck and n is the kinematic

viscosity) effects than the highly Reynolds-dependent flow past circular cylinders. However, the wide decks of long-span

bridges result in flow reattachment. Predicting the moving reattachment point on the top and bottom flanges of a bridge

deck is an equally challenging problem in comparison with the flow-induced moving separation points on circular

cylinders. The Strouhal number, defined as St ¼ ðnsDÞ=U ; where ns is the shedding frequency, is also an important

parameter especially in analyzing vortex-induced oscillations.

Flutter occurs at a high wind velocity ðE70 m=sÞ that has a motion-induced wind load at which the vertical and

torsional vibration modes couple. The risk of flutter-induced vibrations is significant when the torsional natural

frequency is only slightly larger than the vertical natural frequency, which is usually the case on slender long-span

bridge decks. An acceptable flutter limit is one of the principal design criteria for long-span bridges. When the flutter

limit is reached the amplitude of vibration rapidly increases causing a bridge to collapse. Scanlan’s linearized theory of

flutter derivatives (Scanlan and Tomko, 1971), which assumes prescribed motion, is widely used to estimate this. For

many decks, especially box-girders, initial estimates of the derivatives may be obtained using Theodorsen’s inviscid flat-

plate theory (Theodorsen, 1935) and the very useful approximate formula of Selberg (1961). A background to flutter

analysis is also given by Fung (1993).

Experimental testing typically reveals a great sensitivity of the bridge behavior to minor changes in leading edge

geometry. Such sensitivities cannot be predicted by semi-empirical analytical models such as the lift- and wake-

oscillator models (Parkinson, 1989) whose formulation depends on aerodynamic forces obtained from experiments.

Moreover, it is not unusual that more than 20 variations of section models are tested in the wind tunnel in order to

establish the influence of geometrical modifications of section depth and edge configurations for optimizing the

aerodynamic stability. For example, the design of the Great Belt East Bridge involved more than 16 box sections, as

described by Larsen and Jacobsen (1992). Each section model test would in average run over 6-weeks. In the initial

design phase, this becomes time-consuming and expensive. Numerical solutions are becoming increasingly attractive,

not only because they have become affordable, but because they appear to offer increased insight into the complex

processes involved in fluid–structure interaction (FSI). This generates hope that the combination of quantitative

predictions and improved understanding could lead to more efficient use of experimental facilities, saving expense and

time during the design phase by reducing the number of physical model tests required. One long-term goal in the field of

bridge aerodynamics is to have a series of numerical methods available to bridge designers to support the conventional

wind tunnel tests. This study attempts to investigate the use of fluid and structural finite elements to predict classical

flutter. The fluid interaction past two-dimensional (2-D) idealized models are investigated through the arbitrary

Lagrangian–Eulerian (ALE) finite-element (FE) method in which the fluid particles are allowed to move independent of

the structural motion. The case studies presented are based around the Great Belt East Bridge (Denmark) which is a

4:4 m deep semi-streamlined suspension bridge (Fig. 1). It has a main span of 1624 m and is currently the second largest

spanning bridge in the world. Furthermore, unsteady laminar flow models are assumed and no railings are included on

the bridge deck model. First, flow is simulated around the bridge deck held in a stationary position. Sensitivity studies
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Fig. 1. The box-girder deck of the Great Belt East Suspension Bridge.
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on mesh requirement are carried out and the drag/lift forces and Strouhal number are compared with wind tunnel test

results. Second, the deck structure is coupled to the fluid model. The first natural frequency, the first torsional frequency

and the mass moment of inertia of the full-scale structure are prescribed in order to predict the flutter limit of the bridge.

Guide vanes were installed on the bridge to suppress large vortex-induced vibrations experienced full scale (Frandsen,

2001). The article concludes with a case study on FE simulations for a bridge deck with vanes to test their effect on the

flutter limit.

The results presented herein have been computed on a single processor workstation with 200 MHz CPU (SPECfp95:

21.4) and 400 Mb RAM of real memory. The FE flutter simulations typically required 3 days of CPU time. The

memory was fully utilized for any of the test cases presented.

2. Computational bridge aerodynamics review

The need for numerical models is highly desirable because the high Re present at full scale cannot be reproduced in

conventional wind tunnel experiments. Numerical bridge aerodynamics studies is still a young field in computational

fluid dynamics research. In the late 1990s a series of publications revealed that significant computational research had

begun in this area. In the following, a brief review is given on numerical bridge deck studies. We will learn that the

majority of the studies done to model flow around bridge decks numerically include 2-D fluid-only analyses (i.e., flow

past stationary decks); both with/without turbulence models. Results from these analyses are typically steady-state

coefficients (drag, lift and moment) and Strouhal number. Comprehensive studies have also been carried out on

elastically suspended bridge decks which involve analyses with prescribed deck motion allowing linearized aerodynamic

motional force coefficients (flutter derivatives) to be determined (Scanlan and Tomko, 1971). The literature also

revealed that numerical bridge flutter models usually are 2-D without attempts to include a turbulence model

formulation. Other aeroelastic phenomena, for example, buffeting [e.g., Turbelin and Gibert (2002)] and vortex-induced

oscillation [e.g., Lee et al. (1995)] have gotten less attention with regard to computational predictions. We note that this

does not necessarily imply they are less important. The Re is about a factor 10 lower compared to the flow near the

flutter limit. As with other bluff bodies, capturing three-dimensional (3-D) effects and turbulence in the free-stream and

in flow instability zones play an important role in replicating these phenomena which in turn make them more difficult

to model accurately. Dealing with moderate/high Re naturally raises questions with regard to the importance of

modelling three-dimensionality and turbulence. However, accurate flutter predictions appear to be mainly affected by

the leading edge separations and the associated pressure forces. Further we note, for sharp leading edges, accurate

turbulence modelling and 3-D effects may not be important, whereas it could play a strong role for bridge decks with

rounded edges.

One of the first numerical bridge deck simulations relate to the finite-difference method (FDM) and was explored by

Fujiwara et al. (1993), both on stationary and moving 2-D grids discretized by 20451 grid points. The Navier–Stokes

solutions presented were for Re in the range of 2100 – 4000 following wind tunnel experiments. Onset wind-speed

predictions agreed in general with the wind tunnel experiments, but discrepancies were found in the amplitudes, these

being overestimated by the numerical model. Fujiwara et al. reported that a possible explanation could be the loss of 3-

D effects, the 2-D solution predicting larger fluctuations of lift. Furthermore, Onyemelukwe (1993) developed a 2-D

finite difference solver on boundary fitted grids. Laminar Navier–Stokes flow solutions were presented for a variety of

fixed bridge decks around Re of 1 � 105: The comprehensive numerical flow visualization studies of Onyemelukwe

(1993) were however suppressed by restrictions in CPU and memory. He reported that static force coefficients could not

be computed on his IBM 386 PC. It is interesting to note that 10 years after this is no longer a barrier. Later

Onyemelukwe et al. (1998) reported on SunSPARC10 simulations but those were related to flow around circular

cylinders. In the mid-1990s Kuroda (1997) developed a laminar Navier–Stokes solver discretized also based on the

FDM. Solutions for a fixed bridge embedded in an O-grid-type discretized flow domain with 221 � 101 grid points were

shown. Pressure distributions on the deck and static coefficients for Re of 3 � 105 for a range of angle of attacks agreed

well with the results of the wind tunnel tests.

Comparable studies to the present FE flutter simulations include the work of Jenssen and Kvamsdal (1999), who uses

the finite volume method (FVM) to model the flow field on moving unstructured regular grids. Jenssen and Kvamsdal

(1999) show results based on parallel computing techniques. Following the wind tunnel tests and in recognition of

inadequate turbulence modelling, the Re was physically incorrect ð0:45 � 105Þ and was kept constant for all wind

velocities. The flutter limit was based on 2-D analyses with prescribed deck motions (as opposed to self-excited motions)

which was in good agreement with the flutter limit derived from the wind tunnel tests. In contrast to the fully coupled

FSI solutions presented in the present simulations, Jenssen and Kvamsdal have a coupling module included in their

numerical approach between the FVM fluid solver and an FE structural solver, which resulted in weakly coupled
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solutions (as described later in Section 3; also shown in Fig. 5). A background to staggered transient analysis for

coupled mechanical system is described in detail by Felippa and Park (1980). Furthermore, Jenssen and Kvamsdal

(1999) are currently one of the few researchers who have done numerical bridge studies on 3-D flow models. Their

investigations include large eddy simulations on stationary grids expanding a 2-D model of 75 000 cells to 40 � 75 000

cells over a distance of 0:2 � B (where B is the width of the bridge of 31 m) along the span, from which they conclude

that the pressure distribution, the steady state lift and pitching moment are in closer agreement with the results of the

wind tunnel [see also Jenssen, 1998]. However, the present investigations indicate that it does not appear evident that

models of this size are required nor that 3-D simulations are required for the flutter limit prediction as 2-D coarse

models (E1900 nodes in an irregular unstructured grid) without boundary layer modelling seems sufficient, as shown

later in Section 5.

Other investigators have also used and developed FVM solvers. For example, De Foy (1998) applied his unsteady

incompressible finite volume solver to the Great Belt East bridge deck section. Fluid-only simulations in 2-D were

performed for a Re of 1:38 � 108; assuming laminar flow. De Foy found an St ¼ 0:17 which compares reasonable well

with the section model of the wind tunnel (0.11– 0.15), where Re was in the order of 0:4 � 105 to 1:5 � 105:
Furthermore, Bruno et al. (2001) applied the FVM which includes a k–e-model when solving the flow past the

complicated leading edge detail (including railings) of the Normandy cable-stayed bridge (France). Using parallel

computations, Bruno et al. (2001) present 2-D flow results for the stationary bridge deck. Their optimized fluid model

consist of an unstructured irregular grid with domain size of 50B � 40B: The fluid domain is discretized by 29 000 nodes

with a cell thickness at the wall of 2 � 10�3B; where the width of the bridge deck, BE21:2 m: They reported good

agreement with the wind tunnel results when comparing force coefficients for the fixed bridge deck.

Previous numerical studies using the FE method have been undertaken by, e.g., Lee et al. (1995), Mendes and Branco

(1998) and Selvam et al. (2002). Lee et al. (1995) modelled FSI through moving structured regular grids adopting the

ALE formulation. Their 2-D fluid model included a k–e-model and a streamlined-upwind Petrov Galerkin (SUPG)

approximation was assumed. Lee et al. (1995) explored the use of this FE approach on several bridges. The static force

coefficients agreed with the results obtained in the wind tunnel but some discrepancies were found with regard to the

onset velocity of vortex-induced resonance. Mendes and Branco (1998) carried out flow investigations on the Vasco da

Gama cable-stayed bridge (Portugal). They assumed laminar flow. However in recognition of the high prototype Re, an

incorrect low value of Re ð3 � 103Þ was used in the demonstration of the flow solutions. For this flow regime, their

studies demonstrated that a cross-section with baffles aids the suppression of torsional instability. Furthermore, Selvam

(1998) developed an FE model on a rotating moving frame of reference. Their FE model was to the approach bridges of

the Great Belt East (Denmark) and, in a more recent analysis, to the main suspension bridge (Selvam et al., 2002).

Selvam et al. present large eddy simulations for an Re in the order of 105: In their recent analysis they use structured

regular grids of 14 805 nodes contained within a control volume 3B � 8B: They report on drag coefficients and the

flutter instability limit which are in agreement with the wind tunnel tests.

In recent years the spectral method, described by Karniadakis and Sherwin (1999), has made interesting

contributions to modelling moving boundaries. A main advantage is resolving the steep boundary layer gradients and

shear layers with high-order resolution. Spectral element methods also allow for advecting the flow structures with

greater accuracy similar to the vortex methods described below. Using spectral elements also seem to be less CPU

demanding compared to the ALE approach. Li et al. (2002) developed and applied their spectral method based on a

rotating moving frame of reference. In a 2-D case study, they applied their model to predict the flutter limit of the

Second Forth Road Bridge, UK (Robertson et al., 2003b). The computational irregular unstructured mesh was made

up of 1789 elements and Re ranged between 4167 to 11 667. Good agreement with wind tunnel tests were found

although the physical small-scale experiments were based on Re in the order of 1 � 105 to 1 � 106: Futhermore, the

spectral method of Li et al. (2002) was also applied to explore the single degree of freedom instability problem of

galloping of bluff bodies, e.g., Robertson et al. (2003a). Recent investigations provide more detail on bridge deck

behavior, as described by Robertson et al. (2003c).

Grid generation (even in 2-D) can be a time-consuming process, especially when the grids involve bluff bodies. To

this end, avoiding the use of grids, the discrete-vortex method (DVM) pioneered in the 1960s by Sarpkaya and Chorin

as described in the comprehensive reviews [e.g., Sarpkaya (1989), Chorin (1989)], is attractive for FSI analysis. DVM

has been popular for many decades (Leonard, 1980). In particular, the method of source panels has been used for

studying aerodynamic interactions among various components of an aircraft. The vortex elements are naturally

concentrated into areas of nonzero vorticity and unlike the grid-based methods, this means that the small-scale flow

structures will automatically be captured. However, DVM developers are faced with other difficulties in that several

parameters must be prescribed, such as the core radius, defining the maximum circulation to be released for one

boundary element and at which distance the surface vorticity is to be released from the bridge surface. The 2-D DVM

has been applied to bridge decks by, e.g., Walther (1994), Morgenthal and McRobie (2002), Taylor and Vezza (2002).
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In a series of publications, e.g., Walther and Larsen (1997) show flow solutions for fixed bridge decks and flutter limit

predictions in agreement with wind tunnel results. Taylor and Vezza (2002) have also developed a DVM solver and

present results on stationary and oscillating bridge decks. The derived flutter limit based on prescribed motion compare

well with wind tunnel tests. In addition, they show extensive investigations of the flutter motion being suppressed by

inclusion of active control vanes.

Finally, it should be mentioned that various investigators have used hybrid models. For example, Brar (1997)

developed a coupled finite-difference and vortex-method scheme. An Eulerian finite-difference grid was located in the

viscous region next to the bluff body section and the Lagrangian vortex element domain in the flow regions away form

the wall boundaries. Flow solutions were presented for Re of 100–1000. St predictions agreed in general with the

solutions of others. In some case, the numerical solution overpredicted the St.

This present paper explores the use of a fully coupled FE FSI solver to simulate (1) flow past a fixed deck and (2) to

predict the self-excited flutter instability limit.

3. The FE formulation

The numerical solutions of the convection-dominated flow are obtained from a semi-discrete FE formulation of the

flow field equations assuming isothermal incompressible viscous flow contained within the multiphysics FE code

Spectrum (Ansys Inc., 1999). A brief theoretical background of Spectrum is presented here and is limited to the context

of the application to long-span bridge aeroelasticity. To the knowledge of the author, this is a new application of

Spectrum. The most closely related work is the project of Okstad and Mathisen (1998) and Remseth et al. (1999). They

used Spectrum to carry out the FSI simulations for a Reynolds number of 12 812 on a submerged road bridge. They

showed results from 2-D simulations of water flow past an elastically suspended circular cross-section. The cylinder

displacements agreed quantitatively well with the water-tank experiments reported in Dahle et al. (1990). Okstad and

Mathisen (1998) also concluded that the FSI simulations indicated a larger dependency on the FE mesh than the

corresponding fixed cylinder case. Although difficulties in the numerical experiments were experienced, these were

mainly due to the free surface behavior, and thus not particularly relevant to the bridge aerodynamic problem.

In this study, investigations into the FSI mechanisms due to wind action on either a stationary or a moving long-span

bridge deck are carried out. The FE model of this coupled FSI problem consists of three main regions: (i) the fluid

domain where the incompressible Navier–Stokes equations (NSEs) are to be solved; (ii) the structural domain where

nonlinear elasticity equations are to be solved; and (iii) the interface region. For this application the mathematical

formulation strongly couples the incompressible isothermal Navier–Stokes equations of the fluid to the structural

equations. This is achieved by means of an ALE formulation, where the FE mesh is allowed to move independently of

the motion of the fluid particles themselves. The numerical results presented herein are based on 2-D models. For the

FE theory however, the third dimension does not complicate the formulation and no such restriction is imposed.

3.1. Fluid domain

The flow regimes of interest in bridge aerodynamics occur with maximum wind speeds of around 70 m=s: This is

equivalent to a Mach number much less than one; thus, it is assumed that the flow is incompressible for wind-induced

bridge motions. The governing equations of motion are the incompressible isothermal NSEs described (gravity term

here excluded) by

ut þ ðu � rÞu ¼ �
1

r
rp þ nr2u; ð1Þ

and the continuity equation,

r � u ¼ 0; ð2Þ

where the gradient operator is defined as

r ¼
@

@x
i þ

@

@y
j þ

@

@z
k: ð3Þ

The dependent variables are the pressure p; and the fluid particle velocity vector u ¼ fu; v;wgT with reference to x; y and

z Cartesian directions, where i; j and k are unit vectors. The fluid flow is assumed to be laminar and Newtonian. We

assume a constant air density r ¼ 1:23 kg=m3: The kinematic viscosity n (¼ m=r; where m is the dynamic viscosity) is

assumed constant with a value of 1:5 � 10�5 m2=s for air at 20�C:
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The unsteady laminar equations with advection-dominated flow are modelled using the weighted residuals method of

Galerkin/least squares (GLS), as described by Hughes et al. (1989) in which residuals of the Euler–Lagrange equations

have been appended in least squares form to the standard Galerkin projection. The GLS method extends the idea of the

SUPG formulation. The idea originates from the early work of Hughes and Brooks (1979).

To obtain a unique solution for the governing equations, it is necessary to specify initial and boundary conditions.

For the transient analyses herein, the initial conditions are typically set (somewhat arbitrarily) to the free-stream

velocity and zero pressure throughout the domain. A more realistic flow usually appears after several seconds of real-

time simulation; that is, letting the process settle for a while until an arbitrary particle has gone through the

computational domain once or twice.

The boundary conditions for the fluid domain are shown in Fig. 2. The fluid domain Dx is surrounded by boundaries

Cup; Clow; Cin and Cout fixed in space, all specified as rigid boundaries, i.e., zero mesh velocity at these boundaries

ðumi ¼ 0Þ: The boundary CI denotes the moving interface between the fluid and the structural domains. The fluid

particle velocity, mesh velocity and structural velocity are denoted ui; umi and usi; where in 2-D i ¼ fx; yg denotes the

horizontal and vertical directions. Constant velocity at the inflow is assumed, as shown in Fig. 2, i.e., no turbulence is

included in the incoming mean wind speeds. Furthermore, for flow past a fixed bridge deck, there is no mesh motion

specified at the interface, i.e., uI
mi ¼ 0 (and likewise in the entire fluid domain). The boundary conditions are here

divided into nodal boundary conditions (acting on Cup; Clow; Cin) and element boundary conditions at the outlet, Cout:
The nodal boundary conditions (Dirichlet conditions) are applied on the three fluid boundaries as specified in Fig. 2:

(i) inflow boundary: prescribed free-stream velocity, ux and vy ¼ 0; mesh movement is constrained, ðumi ¼ 0Þ on Cin;
(ii) upper and lower domain boundaries: tangential slip vy ¼ 0; mesh movement is constrained, ðumi ¼ 0Þ on Cup; Clow;

(iii) entire fluid domain in 2-D analyses: out-of-plane fluid particle velocity, w ¼ 0; out-of-plane mesh velocity, wm ¼ 0:

The element boundary conditions (Neumann conditions) are applied only at the outlet. Here we prescribe zero outlet

pressure p ¼ 0; and tangential tractions, ti � tijnj on Cout; where nj is the unit outward vector normal and tij is the 3 � 3

viscous stress tensor defined as tij ¼ 2m ui; j : The mesh movement is also constrained. Note that p ¼ 0 on Cout is

legitimate only if the outlet boundary is far enough from the bridge deck. For the case studies herein this distance is

equivalent to four times the width of the bridge deck (measured from the tip of the trailing edge).

3.2. Structural domain

The structure considered is essentially 2-D, and is mounted on elastic springs with viscous dashpots appropriate to

the structural mode of vibration under consideration. In effect, the structure is modelled as an elastic boundary

condition embedded within the fluid domain. On this boundary, structural elements are attached to model a rigid bridge

deck. The structural equations of motion for the dynamical behavior of a damped linear mechanical system with n

degrees of freedom are

Msusi;t þ Csusi þ Ksxsi ¼ Fsi; ð4Þ

where Ms; Cs and Ks denote the mass, damping and stiffness matrices, and xsi and Fsi the displacements and fluid forces.

The subscript i ¼ fx; y; yg denotes the horizontal, vertical and rotational directions. The right-hand side of Eq. (4)
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contains the resultants of the surface traction of fluid. Further we note that the fluid velocity is identical to the structural

velocity ðusiÞ at the interface due to the specified no-slip condition. The matrix contents of Ms; Cs and Ks depend on

whether the simulations are vortex-induced oscillations or flutter. In the flutter simulation, the vertical and rotational

degrees of freedom couple and off-diagonal terms are included in the matrices. If large rotations occur during these

simulations, extra stiffness terms are automatically generated through nonlinear specification in Spectrum. Using special

lumped elements (in user-defined functions), stiffness and damping are specified through springs and dashpots and the

mass is lumped. The Spectrum program was developed for 3-D models and therefore does not offer an interface between

structural beam elements and fluid shell elements. Instead the structural elements are modelled using four-node

quadrilateral elements, which are given an artificial high stiffness to simulate rigid bridge deck boundaries together with

specified zero continuous mass. The fluid domain contains either eight-noded hexahedral or six-noded triangular prism

elements. The major drawback of using Spectrum for 2-D modelling is a model which contains twice the numbers of

nodes intended and therefore double the amount of equations to be solved.

The no-slip condition is prescribed along the fluid–structure interfaces. This means that the following velocity

condition must be satisfied,

uI
si ¼ uI

i on GI ; ð5Þ

where usi and ui represent the velocity fields of the structure and the fluid particles, respectively.

In addition to the kinematic boundary conditions, it is also necessary to impose continuity of traction at the fluid–

structure interfaces,

sI
s ¼ sI

ij on GI : ð6Þ

A plane-strain condition is used to simulate the structural domain ðDsÞ in 2-D, i.e., the nodal boundary condition set

for all nodes of the deck is defined to consist of zero out-of-plane displacements and zero x- and y-rotations.

3.3. The fluid – structure interface

Most fluid FE analyses are accomplished using the Eulerian description in which the mesh is fixed in space and the

material particles flow through the mesh, as shown in Fig. 3(a). Each FE is crossed by the fluid flow. In an aeroelastic

analysis, the Eulerian description is inadequate as the domain surrounding the structure is itself in motion. The usual

numerical representation for structural motion is the Lagrangian description in which the mesh motion coincides with

the motion of the material particles, as illustrated in Fig. 3(b). The fluid domain is free to move, but the mesh movement

and the velocity of the fluid particles are constrained to be the same. This may result in severe mesh distortions due to,

for example, vortex-induced oscillations as each element always contains the same fluid particles. The ALE approach,

supported by the general kinematic theory in Hughes et al. (1981), provides a method for the solution of the equations

describing fluid flow through a moving mesh, as shown in Fig. 3(c). The nodes of the mesh are free to move

independently of the fluid flow. The concept of the moving and deforming reference frame (ALE) has been introduced

in finite differences by Noh (1964). Later, it was implemented in FEs by Donea et al. (1977). In the ALE scheme, the

convective term in the NSEs contains the relative velocity between particles and mesh. The specific application of the

ALE scheme to a moving bridge deck is illustrated in Fig. 4. No deforming fluid domain boundaries are specified in the

current FSI analyses, and the bridge deck is kept as a moving rigid body.

In the present work flow simulation around a stationary bridge deck adopts the Eulerian scheme in the entire fluid

domain, whereas the simulations around a moving bridge deck adopt the ALE scheme in the whole fluid domain.

Several investigators, among these Anju et al. (1997), Mendes and Branco (1999) and Nomura and Hughes (1992), have

described a way of reducing computations by having only a small part of the mesh around the structure as a moving

ALE mesh, and the nonadjacent fluid mesh following the standard Eulerian scheme.

The mesh motion is solved as a quasi-static problem from

Kmxmi ¼ Fmi; ð7Þ

where Km is the stiffness matrix which depends on the mesh movement xmi; if large deformations are encountered. The

subscript i ¼ fx; y; yg denotes horizontal, vertical and rotation. We note the inertia and damping terms are not actually

included in the solution process. It should be emphasized that the mesh formulation has no physical interpretation, i.e.,

terms such as Cauchy stresses and elastic moduli do not have the usual physical interpretation within this context. In

effect, the mesh is modelled as an elastic solid, whose interior node positions are computed as if all nearest nodal

neighbors were coupled by an elastic medium and which sets the positions and velocities of the boundary nodes to

precisely match the boundary motions. In reality, it is a purely mathematical construct, i.e., a method for updating the

mesh in such a way that it maintains integrity. Note that the model does not absolutely guarantee mesh integrity, as it
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may be violated if very large deformations or twisting motions are simulated. In such cases, the problem must be

remeshed.

The boundary conditions for the FSI analyses are shown in Fig. 2. The domain Ds is the moving idealized rigid bridge

deck supported on elastic springs, and Dx is the moving spatial domain of viscous incompressible fluid elements over

which the fluid motion is described. For the FSI analyses, further boundary conditions are specified in the mesh

equations to keep the fluid mesh in contact with the moving structure. It is through the specification of compatibility

and equilibrium at the interfaces the fluid and the moving structure is achieved. Only a compatibility condition is

imposed on the mesh equations, i.e., the mesh follows the structure and fluid interfaces.

At the interfaces, continuity of displacement, velocity and traction fields must be satisfied for all times at all points on

the boundary CI ; where I denotes the interface. This leads to the following boundary conditions on the interfaces:

* coupling of displacement fields: the structure and the mesh displacements need to satisfy

xI
si ¼ xI

mi on Gmov
I ðtÞ; ð8Þ

such that the boundary of the fluid mesh follows the motion of the structure.
* coupling of velocity fields: the fluid and the mesh velocities needs to satisfy

uI
i ¼ uI

mi on Gmov
I ðtÞ; ð9Þ

where uI
i is the fluid particle velocity and uI

mi is the velocity at the moving interface Gmov
I ðtÞ imposed because of the no-

slip condition on Gmov
I ðtÞ: This boundary condition is equivalent to having a Lagrangian description on GI :

In Spectrum, the boundary conditions are transformed into a set of constraint equations. These equations are added

to the system equations and enforced through a set of Lagrange multipliers ensuring that the fluid always stays in

contact with the structure.

Knowing the entire set of boundary conditions, the coupled equations can now be solved,

ui;t þ ððui � umiÞ � rÞui ¼ �
1

r
rp þ nr2ui; r � u ¼ 0;

Msusi;t þ Csusi þ Ksxsi ¼ Fsi; ð10Þ

KmðxmiÞxmi ¼ Fmi:

The right-hand side of the structural equation of motion in Eq. (10) contains the resultants of the surface traction of the

fluid. Note also that the interface fluid velocity is a function of the velocity of the structure, usi; as described in Eq. (5).

In summary, the system equations represent a structural response ðxsiÞ whose magnitude depends on the fluid pressures

acting on it. In turn, the movement of the fluid mesh ðxmiÞ depends on the structural motions ðxI
siÞ at the interface. The

motion of the mesh in the fluid domain affects the convection term of the fluid equations through the mesh velocity ðumiÞ
affecting fluid pressures.

The coupled Eqs. (10) together with the interface constraints and boundary conditions, are recast in a matrix form.

The resulting system of ordinary differential equations in time is then solved. The Spectrum Code employs a

multistagger approach, which partitions the full system of coupled field equations into two or more smaller equation

subsystems (staggers). For flow past a stationary bridge deck, the field equations are solved for velocities and pressures

only. These unsteady fluid-only models are solved using a segregated stagger approach within each time-step, assuming

a weak coupling between the velocity (stagger 1) and the fluid pressure (stagger 2); i.e., one solves for the velocity while

keeping the pressure frozen and then solving for the pressure with the new velocities held constant, etc. The velocity and

pressure stagger are solved implicitly (Hilber et al., 1977) using iterative solvers, that is, the conjugate gradient solver for

the pressure stagger (symmetric matrix problem) and the generalized minimum residual for the velocity stagger

(nonsymmetric matrix problem). When monitoring the convergence criteria, it is typically observed that the pressure

convergence takes more nonlinear iterations before stabilizing compared to the convergence of the velocities.

Solutions for the FSI problem are achieved through a strong coupling between fluid velocity/pressure and structural

displacements (stagger 1) weakly coupled to the fluid mesh displacements (stagger 2). In a first set of iterations, the fluid

velocity/pressure (stagger 1) is found causing a change in the geometry as a result of the fluid mesh moving (stagger 2).

The fluid velocity/pressure values are updated to accommodate the new geometry and the converged new set of fluid

velocity/pressure values will again satisfy the field equations. Having updated the velocities and the pressures on the

fluids, the load on the structure (stagger 1) has changed and as a result the structure moves. To accommodate the

displacements, the fluid mesh needs to update itself (stagger 2). The process repeats itself in the stagger control loop

until convergence at both staggers are reached before moving on to the next time step, achieving the time-accurate

solution for a fixed time increment within each time step. The velocity and pressure stagger are solved implicitly as for
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the fluid-only problem, but using sparse direct solvers as opposed to the iterative solvers used for the fixed bridge deck

case. In FSI analyses, the use of the iterative solver introduces ill-conditioning in some cases, resulting in the lack of

robustness. The sparse direct solvers do not suffer from this lack of robustness. Monitoring the convergence criteria in

the FSI analyses involves many more subsets of iterations compared to the fluid-only analyses, but the convergence of

the state variables compared to the residual convergence nevertheless dominates in the convergence loops.

Furthermore, it should be mentioned that the Spectrum code used as a tool for all the numerical FE experimentation

in this paper was distributed for commercial use in 1993–1999. It differs from other FE software in the fact that it is able

to perform fully coupled fluid–structure analyses. This is in contrast with the more traditional approach where a weakly

coupled method is used, as shown in Fig. 5, by repeatedly solving the fluids and solids problem separately and

exchanging the results of one analysis as initial conditions for the next (Kvamsdal et al., 1999).

4. Flow past a stationary bridge deck

In the case studies presented in the following section, prior to the full fluid–structure analyses of moving bridge decks,

a series of simulations are undertaken to observe the unsteady flow patterns around a stationary structure in an attempt

to establish mesh-modelling criteria for the flow phenomena of interest. The solution of the fluid equations results in

computed pressures and tractions which act on the bridge. The resulting forces on the bridge deck are then computed by

integrating the pressures and friction components along the boundary on the deck surfaces. The net forces (per unit

span) are usually expressed in a dimensionless form, and referred to as the aerodynamic coefficients, the drag ðCDÞ; the

lift ðCLÞ and the moment ðCM Þ coefficients:

CDðtÞ ¼
FDðtÞ

1
2
rU2D

; CLðtÞ ¼
FLðtÞ

1
2
rU2B

; CM ðtÞ ¼
MðtÞ

1
2
rU2B2

; ð11Þ

where U is the free-stream velocity, B; D is the width and depth of the bridge deck, and FD; FL; and M are the drag, the

lift and the moment coefficients. The drag contains contributions from both skin friction drag and pressure drag, the

former being the along-wind resultant of the shear stresses acting tangential to the deck surfaces and the latter the

along-wind resultant of the pressures acting normal to the deck surfaces. The lift is the fluid force exerted on the bridge

perpendicular to the flow direction, containing pressure and friction contributions. Lift occurs on a bridge deck mainly

due to differences in pressures between top and bottom flanges.

Based on initial studies, a minimum fluid domain of 100 � 200 m2 with an arbitrary depth of 1 m was adopted,

surrounding the 31 m wide, 4:4 m high suspension bridge box-girder deck. The fluid domain is discretized using one

layer either of eight-noded hexahedrons or six-noded triangular prism elements. Both element types have linear

variation for velocities and piecewise constants for pressures. The flow regimes for these fluid analyses are in the region

6:2 � 106oReo1:65 � 107 corresponding to a full-scale velocity range 3 – 8 m=s: Note that 8 m=s is the wind speed

where large vortex-induced oscillations were observed and recorded full scale (Frandsen, 2001).

As mentioned these investigations are limited to idealized 2-D flow. All analyses undertaken herein are for unsteady

laminar flow. Some large eddy simulations based on the Smagorinsky model (Smagorinsky, 1993) were carried out by

Frandsen (1999) but are not presented herein as this model improvement has no effect on the flutter limit prediction. As

we will learn the prediction of flutter instability for sharp edge bridge decks does not appear sensitive to turbulence and

3-D flow structure modelling Furthermore, no railings are included in the FE models, although such obstructions are
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known to cause major changes in the fluid flow with subsequent increase of the aerodynamic forces acting on the bridge

deck.

The first vortex-shedding simulations carried out are based on the model shown in Fig. 6. The mesh is regular

unstructured with 3438 eight-noded hexahedral elements and 2 � 3564 nodes, and the element height nearest to the deck

ðhbÞ is 1000 mm; thus this is a coarse mesh with no attempt to model the boundary layer.

From the prescribed initial conditions, as described in Section 2, and with 8 m=s inflow velocity corresponding to

Re ¼ 1:65 � 107; the fluid solution approaches a steady oscillatory state after approximately a dimensionless time

t� ¼ tU=B ¼ 8: It exhibits a well-developed vortex street with a wake spacing ratio of 0.39 ð¼ 3:2D=8:3DÞ; vortices

being shed with a frequency of 0:19 Hz in an alternating pattern from opposite sides of the fixed bridge deck, as shown

in Fig. 7. This is equivalent to a prediction St ¼ 0:11; which agrees with the model tests (Larose, 1992) and within the

range of St values of 0.08 – 0.15 obtained during full-scale measurements (Frandsen, 2001). Fig. 7 shows generated flow

features such as the separation bubble at the top flange of the leading edge and the ‘‘dead-air’’ region in the near-wake

(low velocities). Although the no-slip condition seems to be accounted for, the velocity vector profiles show no evidence

that the boundary layer is modelled realistically. These results, generated on an extremely coarse mesh, nevertheless

demonstrate the capability of the solver to develop periodic shedding. The model (mesh 1) is improved in the following

model (mesh 2) by increasing the number of elements in the wake and near the deck surfaces. The fluid domain

ð3:2B � 6:5BÞ is meshed with 3420 six-noded triangular prism elements and 2 � 1884 nodes (mesh 2), as shown in Fig. 8.

Note that the total number of elements is similar to the initial model (mesh 1), but the number of nodes has been

reduced by approximately a factor of 2 due to the irregular unstructured mesh. The simulation is started from t ¼ 0

with ux ¼ 8 m=s; vy ¼ 0 and p ¼ 0 as initial conditions at every nodal point in the FE model. From this nonphysical

initial condition, the solution approaches a steady state oscillatory condition yielding a value of St ¼ 0:28 using a fixed

ARTICLE IN PRESS

Fig. 6. Discretization of the fluid region (mesh 1) around the suspension bridge of the Great Belt East. Mesh with 3438 elements and

2 � 3564 nodes. (a) whole mesh, (b) close-up and (c) element size near deck surface, hb ¼ 1000 mm:

Fig. 7. Flow solution (mesh 1) corresponding to an Re ¼ 1:65 � 107 at t� ¼ 38:2; with a fixed time increment: Dt� ¼ 0:005: (a) Velocity

vector field and (b) vorticity contours.
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time increment Dt� ¼ 0:005: This is at some variance to the experimentally recorded St of 0.08 – 0.15. The discrepancy

is possibly due to not capturing the real turbulent flow. This result is also further from the experimental result than the

value of 0.11 obtained using the more coarse model of mesh 1. The model of mesh 2 was also tested for other Reynolds

numbers. Fig. 9 shows a simulation at Re ¼ 6:2 � 106 resulting in a value of St ¼ 0:26: Also for this model the velocity

profiles near the deck surface again show no indication that the boundary layer is modelled realistically. An analysis

with ramped inflow velocities was also carried out. This revealed the model to be sensitive to initial conditions. Some

initial conditions were observed to cause a phenomenon similar to numerical locking, i.e., when one of the variables at

an interior node (or nodes) is unable to change. For those initial conditions, the model did not develop a periodic wake

but merely exhibited a dead-air region behind the bridge. For those initial conditions that did produce wakes, the wake
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Fig. 8. Discretization of the fluid region (mesh 2) around the suspension bridge of the Great Belt East. Mesh with 3420 elements and

2 � 1884 nodes. (a) Whole mesh, (b) close-up, (c) element size near deck surface, hb ¼ 245 mm; (d) leading edge and (e) trailing edge.

Fig. 9. Flow solution (mesh 2) corresponding to an Re ¼ 6:2 � 106 at t� ¼ 23:2; with a fixed time increment: Dt� ¼ 0:005: (a) Velocity

vector field and (b) vorticity contours.
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spacing ratio of 0.31 ð¼ D=3:2DÞ had decreased compared to the 0.39 ratio obtained from mesh 1, as illustrated in Fig.

9. A sensitivity study on reducing the time increment revealed no significant change in the shedding frequency. The

numerical estimated mean aerodynamic coefficients (mesh 2) were found to be around CD ¼ 0:51 and CL ¼ �0:08: The

drag coefficient compares well with the drag ðCD ¼ 0:54Þ of the section model test (part of main span; 1:80) (DMI and

SINTEF, 1993b). However, the lift coefficient differs by 20% but compares well with the lift coefficient ðCL ¼ �0:08Þ of

the Taut strip (main span; 1:300) model (Larose, 1992). Many other models with increased mesh density have been

tested (Frandsen, 1999) but are not presented herein as the model of mesh 2 suffices for the simulation of the aeroelastic

phenomenon of flutter.

5. Flutter instability

In the following, we investigate the ability of the FE model to simulate classical flutter. It is shown that the

mechanism of flutter are independent of the much higher frequency bluff body shedding phenomenon. Furthermore, it

is also recognized that the flat-plate flutter theory of Theodorsen (1935) gives comparatively accurate solutions despite

the assumption of inviscid flow, suggesting that accurate modelling of the boundary layer may not be so critical for this

aeroelastic phenomenon compared to for example modelling of vortex-induced oscillations.

Flutter instabilities occur at high wind speeds as a result of the dominance of self-excited aerodynamic forces. These

always involve torsional motions, and may also involve vertical bending motions. Fig. 10 shows the characteristic

response due to classical flutter, which involves a 2-D bluff body able to move, with restraint, in both vertical

translation and rotation. Classical flutter occurs at a wind velocity that has a motion-induced wind load at which the

vertical and torsional vibration modes couple. The risk of flutter-induced vibrations is significant when the torsional

natural frequency is only slightly larger than the vertical natural frequency, which is often the case on slender long-span

bridge decks. For a flat plate or a thin aerofoil, this is a clearly defined phenomenon which requires a coupled

oscillation; i.e., simultaneous vertical and torsional motion at a specific relative amplitude and phase. The potential

energy input by the aerodynamic forces in flutter is very large and consequently the rise in amplitude is known to be

rapid if the flutter limit is reached with catastrophic effects. In contrast to vortex-induced oscillations, this phenomenon

is also insensitive to structural damping, as illustrated in Fig. 10. Moreover, the global coupled flutter motion is

unaffected by vortex shedding although vortex shedding does occur as would be expected for any bluff section. An

acceptable flutter limit is one of the principal design criteria for long-span bridges and Scanlan’s theory of flutter

derivatives is widely used to estimate this (Scanlan and Tomko, 1971). The solution of the flutter speed based on 2-D

inviscid flat-plate theory was established by Theodorsen (1935). It was later approximated by Selberg (1961) for bridge

decks as

Vf

faB
¼ 5:246

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m

rairB
2

r

B

� �
1 �

fv

fa

� �2
 !vuut ; ð12Þ
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Fig. 10. Sketch of wind-induced aeroelastic phenomena.
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where Vf is the critical flutter wind speed. The mass is denoted by m and the radius of gyration r ¼
ffiffiffiffiffiffiffiffiffiffiffi
Im=m

p
; where Im is

the mass moment of inertia and B is the width of the bridge. The vertical natural frequency is denoted fv and the

torsional natural frequency fa; respectively. The separation of the torsional natural frequency of the structure and the

vertical natural frequency has a major effect on the critical speed. The flutter limit prediction by Selberg is known to

give reliable and good predictions for practical box-girder cross-sections compared to wind tunnel test results, provided

fv=fa is not too close to unity.

In the wind tunnel, the flutter limit behavior of a particular cross-section is measured using either prescribed motion

or free oscillation experiments with section models. From these experiments, a set of frequency-dependent flutter

derivatives are obtained from which the critical flutter velocity of the full-scale structure may be deduced. By contrast,

the numerical flutter experiments described herein are all time-domain analyses, with self-excitation arising naturally

from forward integration of the nonlinear field equations. This extends the conventional approach of the flutter

derivative formulation (Scanlan and Tomko, 1971), which is based on prescribed motion and linearization of the

aerodynamic forces. Essentially, Scanlan’s theory provides a means of scaling the wind-tunnel experimental results to

predict the flutter stability of the full-scale structure. However, it cannot predict the results of experiments a priori in the

manner that the FE approach is endeavoring to do. In the present flutter simulations, a spring- and dashpot-supported

structure is added to the fluid model of Figs. 6 and 8 using four-noded isoparametric shell elements. The deck model is

shown in Fig. 11. Lumped masses were applied to the structure to simulate the mass per unit length and mass moment

of inertia per unit length of the full-scale structure, and the spring stiffnesses were ascribed to give the correct natural

frequencies in the fundamental symmetric flexural and torsional modes (Fig. 12). The torsional rigidity of the deck is

sufficiently high that this required the vertical springs to be placed on wind-transparent ‘out-riggers’ outside the cross-

section. Horizontal motion was restrained by a horizontal spring attached at the intersection of four stiff, massless

struts meeting at the shear center. The structural properties used in the flutter suspension bridge analyses are listed in

Table 1. The initial conditions in the flutter analyses must be treated carefully. The instantaneous application of the full

wind speed to an initially stationary structure leads to large transient initial motions from which it is difficult to extract

definitive conclusions about the stability of small oscillations. To eliminate this problem, structural damping values are

set to near-critical values for the first few seconds of the simulation until the structure settles into a near-stationary

configuration. The damping values are then changed to their estimated full-scale values. In this case they have

prescribed values of 1% and 0.6% logarithmic decrement for vertical and torsional modes, respectively. The subsequent

response under further forward integration was then observed to determine if the amplitude of small residual

oscillations decay or grow. The observed self-excited oscillatory behavior predicted by Spectrum followed the flutter

motion predicted by flat-plate theory (Theodorsen, 1935), as shown in Fig. 13. During a flutter motion, it can be

ARTICLE IN PRESS

(shear center)

dummy elements

dashpot

spring

dashpot dashpot

spring

mass

mass

infinite stiff spring
mass

2.35m
28.6m

Fig. 11. Flutter deck model used in FE simulations.
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Fig. 12. Flutter modes: &; full-aeroelastic model; �; taut strip model. The symmetric first vertical and torsional modes of vibrations,

after Larose (1992).
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observed that the tip (or near) leading edge acts as the point of rotation with much larger amplitudes present at the

trailing edge. This is in contradiction to the flutter eigenvector suggested in Hay (1992), whose argument is based on

quasi-static considerations and does not take full account of dynamic effects. As mentioned previously, rather than

aiming to determine flutter derivatives, the intention here is to determine the flutter limit directly by forward integration

of the field equations. The self-excited flutter solutions related to meshes 1 and 2 are shown in Figs. 13 and 14. The

coarsest model solution (mesh 1) shown in Fig. 13 suggest a flutter limit of around 50 m=s: Fig. 14 shows some selected

displacement histories at a variety of wind speeds for the improved boundary layer model (mesh 2). These results

suggest that the fluid model of mesh 1 is inadequate as the model of mesh 2 predicts a flutter velocity of around 70 m=s

close to the 70 – 75 m=s predicted by the original wind tunnel tests conducted on the section model, taut strip and full-

aeroelastic models (as listed in Table 2). A shapshot of the associated mesh and pressure contours is also shown in

Fig. 15 at a time when the flutter limit of 70 m=s is reached. Mesh dependency of the flutter predictions is therefore

evident, and in this case at least, the refined boundary layer model although still relatively coarse model (mesh 2)
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Table 1

Full-scale properties of the Suspension Bridge (DMI and SINTEF, 1993b) used in the first symmetric flutter mode simulations

Natural vertical frequency ðf1vÞ (Hz) 0.097

Natural torsional frequency ðf1aÞ (Hz) 0.270

Mass per unit length ðmÞ (kg/m) 23 687

Equivalent spring stiffness for vertical bending mode

per unit length ðkvÞ ðN=m2Þ 8785.06

Mass moment of inertia about shear center

per unit length ðImÞ ðkgm2=mÞ 2:501 � 106

Equivalent spring stiffness for torsional mode

per unit length ðGaÞ (Nm/m) 7:194 � 106

Fig. 13. Spectrum prediction of the flutter motion showing time histories of vertical displacements at leading and trailing edge

(mesh 1). Inflow velocity of 50 m=s:

Fig. 14. Flutter solution (mesh 2). Histories of vertical displacements at the downwind out-rigger.
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appears to be giving the more accurate predictions in comparison with the model of mesh 1. Although mesh dependency

does exist for this flow regime, it was found to be less sensitive to boundary layer effects compared to the vortex-induced

oscillation analyses, as described by Frandsen (1999). This also follows the fairly accurate inviscid flat-plate theory of

Theodorsen (1935). Other unstructured models (Frandsen, 1999) were also tested in order to ensure convergence in the

numerical solution. In contrast to the FDM, the unstructured grid used in the FE analysis do not include a systematic

convergence check. Therefore, it is not possible to conclude with the same certainty if the FE solutions presented has

converged. However, comparing solutions (Frandsen, 1999) from the different FE layouts relative to the flutter limit of

the physical model tests do guide one to believe that the models used, may be close to what is required for this type of
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Fig. 15. Snapshot of mesh deformation and pressure contours overlaying the deformed mesh (enlarged by a factor of five). Inflow

velocity of 70 m=s:

Table 2

Flutter limit predictions from various methods for the Great Belt East Suspension bridge

Source Flutter limit ðm=sÞ Forced Self-excited

FEs (mesh 2), without vanes

Spectrum analysis 70 �
FEs (Fig. 17), with vanes

Spectrum analysis 65 �
FEs (14 805 nodes)

(Selvam et al., 2002) 69 �
Finite volume (40 000 cells)

(Jenssen and Kvamsdal, 1999) 70 �
Discrete vortices (Larsen and Esdahl, 1998) 72 �
Discrete vortices (Frandsen, 1999) 65 �
Section model, 1:80, without wind screens

(DMI and SINTEF, 1993b) 74 �
Section model, 1:80, with wind screens

(DMI and SINTEF, 1993a) 67 �
Taut strip model, 1:300 (Larose, 1992) 72 �
Full-aeroelastic model, 1:200

(DMI and SINTEF, 1992) 70–75 �
Approximation (Selberg, 1961) 75 — —
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flow simulation, that is about 1884 nodes in an irregular unstructured grid. Furthermore, it should be noted that the

prescribed motion and free oscillation wind tunnel tests in general appear to result in similar stability limits, even

though some discrepancies are known to be present when comparing aerodynamic derivatives from the two approaches.

For example, the discrete-vortex model did display a significant discrepancy in the predicted flutter limit (Table 2). The

FE predictions of Spectrum are also in reasonable agreement with numerical flutter limit predictions of other

investigators listed in Table 2. For example, Selvam et al. (2002) predicted a self-excited flutter limit of 69 m=s: Their

results are based on FE large eddy simulation with a rotating domain which includes a regular unstructured grid of

14 805 nodes. Further we also note that Jenssen and Kvamsdal (1999) are using high-density grids resulting in a

requirement for parallel processing. The models used in the Spectrum flutter analysis indicate that this may not be

needed. At 70 m=s the flexural–torsional oscillations of the Spectrum analysis (mesh 2) predict a frequency of about

0:22 Hz which may be compared with the still-air uncoupled fundamental frequencies of 0.097 and 0:27 Hz in flexure

and torsion, respectively. A discrete-vortex model developed by Walther (1994) was applied for comparison reasons. In

contrast to the flutter limit of 72 m=s based on prescribed motion, the self-excited discrete-vortex model predicted a

flutter limit of 65 m=s and a coupling frequency of 0:25 Hz: This is somewhat a lower flutter limit and lower period in

comparison with the other methods (Table 2). The reason for this discrepancy is not clear. In agreement with the FE

simulation, Jenssen and Kvamsdal (1999) also found that the dominant mode was the torsional motion response with a

coupling frequency of 0:21 Hz: Periodic vortex shedding did occur in these simulations as would be expected from such

a bluff section (Fig. 16), with a frequency of around 4:4 Hz corresponding to a Strouhal number, St of 0.28. This was

also obtained for the flow around the bridge when held in a stationary position (mesh 2). In the time history of Fig. 16,

high-frequency signals can be observed on the lower-frequency flutter motion. These signals correspond to the vortex-

shedding frequency. The low-frequency flexural–torsional motions are therefore the result of a different aerodynamic

effect than vortex-induced bridge vibrations, see Frandsen (1999) for further discussion. Further, we note when the

flutter limit is reached, the structure controls the fluid flow. Furthermore, in the Spectrum simulations, large static

displacements were induced during the initial heavily damped simulations, indicating an over-estimation of the static lift

and moment, a result perhaps attributable to the absence of deck furniture from the numerical model. In this context, it

appears that flow obstructions such as wind screens (DMI and SINTEF, 1993a) decrease the flutter limit (Table 2). It

should also be mentioned that guide vanes were installed on the bridge when the construction were completed, aiming

to suppress large vortex-induced vibrations experienced full scale (Frandsen, 2001). Some FE simulations were carried

out for the bridge deck with vanes to test the effect of vanes on the flutter limit. The fluid and the deck model are shown

in Figs. 17 and 18. Guide-vane surfaces constructed of shell elements were added to the bridge model, attached via stiff

four-noded quad elements through which the flow is free to pass. A no-slip condition on vane surfaces was prescribed.

The vertical response histories for the models with and without vanes are presented in Fig. 19 showing that the model
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Fig. 16. Pressure history near trailing edge for the lower frequency flutter motion. Details of the high-frequency components

equivalent to the vortex shedding are also shown. Inflow velocity of 70 m=s:
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with vanes is approaching the flutter limit at around 65 m=s: Similar to the flow effects due to railings and wind screens,

this type of flow obstruction also causes a decrease of the flutter speed. A snapshot of the flutter motion with an initial

condition of 65 m=s is shown in Fig. 20.

ARTICLE IN PRESS

Fig. 17. FE model with guide vanes. Mesh contains 9856 elements and 2 � 4994 nodes. Mesh detail at trailing edge is shown.

Fig. 18. Location of springs, lumped masses and dashpots in the flutter deck model with vanes.

Fig. 20. Snapshot of flutter motion for the deck with vanes.

Fig. 19. Comparison of the time histories of vertical displacements at the downwind rigger with and without vanes. Inflow velocity of

65 m=s:
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Flutter simulations are CPU-intensive analyses. Herein even more so because twice as many nodes were used as

required as Spectrum allows 3-D elements only. Using a single processor HP C200 workstation, a 40-s simulation for

mesh 2 took approximately 40 h using a time step of 0:003 s: The models used, despite the coarseness of the meshes

compared to those of other investigators, may be close to what is required for this type of flow simulation. However,

higher CPU requirements, but not necessarily parallel processing, than those used here are desirable if the method is to

prove to be a viable supplementary tool to the wind tunnel.

6. Conclusions

Long-span bridges require extensive wind tunnel testing. The objective of this research is to determine whether a

computational method can lead to a reduction in the number of expensive physical model tests that are currently

required to determine the aerodynamic cross-section of a single structure. This study describes the use of a coupled

fluid–structure interaction (FSI) finite element (FE) solver. Aerodynamic effects of flutter-bridge motion are

investigated using fluid and structural two-dimension FEs on moving nonadaptive grids. The moving interface between

fluid and structure is modelled through the arbitrary Lagrangian–Eulerian (ALE) formulation.

First, simulation of fluid flow around a fixed bridge deck was simulated. The FE model was validated using different

meshes for a range of high Reynolds numbers. Time-domain vortex-shedding analysis was presented. Some questions as

to model accuracy were raised due to a discrepancy in Strouhal number compared to physical experiments. The reason

being that the turbulent flow around the fixed deck problem was not captured reliably with the present viscous FE

solver. However, it was shown, that the mechanisms of flutter are independent of the much higher-frequency bluff body

shedding phenomenon and was therefore not explored any further in this study.

Second, flutter simulations were presented showing the ability of the FE model to self-excite into flexural–torsional

flutter. The FE simulations showed that, when the flutter limit is reached, the structure controls the fluid flow. The

flutter limit of the long-span bridge deck was found to be in good agreement with the wind tunnel results and other

numerical methods. Furthermore, it is also recognized that the flat-plate flutter theory of Theodorsen (1935) gives

comparatively accurate solutions despite the assumption of inviscid flow, suggesting that accurate modelling of the

boundary layer may not be so critical for this aeroelastic phenomenon. The models used, despite the laminar flow

assumption and the coarseness of the meshes compared to those of other investigators, may be close to what is required

for this type of flow simulation, that is about 1900 nodes in an irregular unstructured grid. However, a higher CPU

requirement, but not necessarily parallel processing, than those used here is desirable if the FE ALE approach is to

prove to be a viable supplementary tool to the wind tunnel.

In conclusion, prediction of flutter instability for sharp edge bridge decks does not appear sensitive to turbulence and

three-dimensional flow structure modelling.
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